Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Lupus Sci Med ; 11(1)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599668

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE) is a highly heterogeneous disease, and B cell abnormalities play a central role in the pathogenesis of SLE. Long non-coding RNAs (lncRNAs) have also been implicated in the pathogenesis of SLE. The expression of lncRNAs is finely regulated and cell-type dependent, so we aimed to identify B cell-expressing lncRNAs as biomarkers for SLE, and to explore their ability to reflect the status of SLE critical pathway and disease activity. METHODS: Weighted gene coexpression network analysis (WGCNA) was used to cluster B cell-expressing genes of patients with SLE into different gene modules and relate them to clinical features. Based on the results of WGCNA, candidate lncRNA levels were further explored in public bulk and single-cell RNA-sequencing data. In another independent cohort, the levels of the candidate were detected by RT-qPCR and the correlation with disease activity was analysed. RESULTS: WGCNA analysis revealed one gene module significantly correlated with clinical features, which was enriched in type I interferon (IFN) pathway. Among non-coding genes in this module, lncRNA RP11-273G15.2 was differentially expressed in all five subsets of B cells from patients with SLE compared with healthy controls and other autoimmune diseases. RT-qPCR validated that RP11-273G15.2 was highly expressed in SLE B cells and positively correlated with IFN scores (r=0.7329, p<0.0001) and disease activity (r=0.4710, p=0.0005). CONCLUSION: RP11-273G15.2 could act as a diagnostic and disease activity monitoring biomarker for SLE, which might have the potential to guide clinical management.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , Interferon Tipo I/genética , Biomarcadores
2.
Science ; 383(6681): 413-421, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271512

RESUMO

Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.


Assuntos
Autoimunidade , Linfócitos B , Diferenciação Celular , Regulação da Expressão Gênica , Lúpus Eritematoso Sistêmico , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Animais , Humanos , Camundongos , Autoimunidade/genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Haploinsuficiência , Envelhecimento/imunologia , Modelos Animais de Doenças , Feminino
3.
Arthritis Rheumatol ; 76(3): 384-395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37728419

RESUMO

OBJECTIVE: The diminished expression of microRNA-146a (miR-146a) in systemic lupus erythematosus (SLE) contributes to the aberrant activation of the interferon pathway. Despite its significance, the underlying mechanism driving this reduced expression remains elusive. Considering the integral role of enhancers in steering gene expression, our study seeks to pinpoint the SLE-affected enhancers responsible for modulating miR-146a expression. Additionally, we aim to elucidate the mechanisms by which these enhancers influence the contribution of miR-146a to the activation of the interferon pathway. METHODS: Circular chromosome conformation capture sequencing and epigenomic profiles were applied to identify candidate enhancers of miR-146a. CRISPR activation was performed to screen functional enhancers. Differential analysis of chromatin accessibility was used to identify SLE-dysregulated enhancers, and the mechanism underlying enhancer dysfunction was investigated by analyzing transcription factor binding. The therapeutic value of a lupus-related enhancer was further evaluated by targeting it in the peripheral blood mononuclear cells (PBMCs) of patients with SLE through a CRISPR activation approach. RESULTS: We identified shared and cell-specific enhancers of miR-146a in distinct immune cells. An enhancer 32.5 kb downstream of miR-146a possesses less accessibility in SLE, and its chromatin openness was negatively correlated with SLE disease activity. Moreover, CCAAT/enhancer binding protein α, a down-regulated transcription factor in patients with SLE, binds to the 32.5-kb enhancer and induces the epigenomic change of this locus. Furthermore, CRISPR-based activation of this enhancer in SLE PBMCs could inhibit the activity of interferon pathway. CONCLUSION: Our work defines a promising target for SLE intervention. We adopted integrative approaches to define cell-specific and functional enhancers of the SLE critical gene and investigated the mechanism underlying its dysregulation mediated by a lupus-related enhancer.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Humanos , Cromatina , Cromossomos/metabolismo , Interferons/genética , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética
5.
Front Immunol ; 14: 1200167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720233

RESUMO

Objective: There is an urgent need for novel biomarkers in lupus nephritis (LN). We report a non-invasive urinary biomarker, L-selectin, in two independent multi-ethnic cohorts. Methods: uL-selectin was tested cross-sectionally in a Chinese cohort (n=255) and a US cohort (n=219) of SLE patients and controls using ELISA. A longitudinal cohort includes 20 active Chinese LN patients. Results: uL-selectin was significantly increased in active LN patients compared to active non-renal SLE, inactive LN, inactive non-renal SLE, chronic kidney disease patients, and healthy controls. uL-selectin positively correlated with global and renal disease activities as well as histological activity index and chronicity index (CI). Low uL-selectin was an independent predictor for high CI. During follow-up, uL-selectin levels decreased significantly in the complete renal remission group. Conclusion: uL-selectin is a novel biomarker of disease activity and renal histopathology in LN across multiple ethnicities. It also reflects treatment response in LN patients during follow up.


Assuntos
Nefrite Lúpica , Insuficiência Renal Crônica , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/tratamento farmacológico , Selectina L , Etnicidade , Rim
6.
Front Immunol ; 14: 1198365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497212

RESUMO

Autoimmune diseases (ADs) are characterized by the production of autoreactive lymphocytes, immune responses to self-antigens, and inflammation in related tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly expressed in activated T cells and works as a critical regulator in the inflammatory response. In this review, we first describe the structure, expression, and how the signaling pathways of CTLA-4 participate in reducing effector T-cell activity and enhancing the immunomodulatory ability of regulatory T (Treg) cells to reduce immune response, maintain immune homeostasis, and maintain autoimmune silence. We then focused on the correlation between CTLA-4 and different ADs and how this molecule regulates the immune activity of the diseases and inhibits the onset, progression, and pathology of various ADs. Finally, we summarized the current progress of CTLA-4 as a therapeutic target for various ADs.


Assuntos
Doenças Autoimunes , Humanos , Antígeno CTLA-4 , Linfócitos T Reguladores
7.
Arch Rheumatol ; 38(1): 82-94, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37235115

RESUMO

Objectives: This study aims to explore the mechanism by which long non-coding ribonucleic acids (lncRNA) X-inactive specific transcript (XIST) affects the progression of adjuvant-induced arthritis (AIA). Materials and methods: Freund's complete adjuvant was used to induce arthritis in rats. The polyarthritis, spleen and thymus indexes were calculated to evaluate AIA. Hematoxylin-eosin (H&E) staining was used to reveal the pathological changes in the synovium of AIA rats. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and IL-8 in the synovial fluid of AIA rats. The cell continuing kit (CCK)-8, flow cytometry, and Transwell assays were used to assess the proliferation, apoptosis, migration and invasion of transfected fibroblast-like synoviocytes (FLS) isolated from AIA rats (AIA-FLS). Dual-luciferase reporter assay was performed to verify the binding sites between XIST and miR-34b-5p or between YY1 mRNA and miR-34b-5p. Results: The XIST and YY1 were highly expressed, and miR-34a-5p was lowly expressed in the synovium of AIA rats and in AIA-FLS. Silencing of XIST impaired the function of AIA-FLS in vitro and inhibited the progression of AIA in vivo. The XIST promoted the expression of YY1 by competitively binding to miR-34a-5p. Inhibition of miR-34a-5p strengthened the function of AIA-FLS by upregulating XIST and YY1. Conclusion: The XIST controls the function of AIA-FLS and may promote the progression of rheumatoid arthritis via the miR-34a-5p/YY1 axis.

8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 445-450, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248839

RESUMO

Objective To identify the potential long non-coding RNA (lncRNA) expressed in rheumatoid arthritis (RA) synovium key to RA onset and investigate its association with immune cell infiltration. Methods RA synovium data were downloaded from the GEO database and normalized. The lncRNAs key to RA onset were identified using multiple machine learning methods. Infiltration of 22 immune cell populations in RA synovium was measured by cell-type identification by estimating relative subsets of RNA transcripts (CIBER-SORT). The relationship between the key lncRNA and infiltrating immune cells was analyzed. Finally, real-time quantitative PCR was applied to validate the expression of the key lncRNA in RA synovial cells. Results lncRNA human leukocyte antigen complex P5(HCP5) was identified as the key lncRNA associated with RA onset. Infiltration analysis revealed increased abundance of CD8+ T cells, γδ T cells, and M1 macrophages while decreased abundance of M2 macrophages in RA synovial tissue. Correlation analysis demonstrated that the lncRNA HCP5 expression was positively associated with the infiltration abundance of CD8+ T cells, γδ T cells, and M1 macrophages in RA synovial tissue. Furthermore,the expression of lncRNA HCP5 in RA synovial cells was up-regulated. Conclusion lncRNA HCP5 expression is up-regulated in RA synovial tissue and potentially associated with immune cells infiltration.


Assuntos
Artrite Reumatoide , RNA Longo não Codificante , Humanos , Linfócitos T CD8-Positivos , Antígenos HLA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Membrana Sinovial/metabolismo
9.
Biochem Biophys Res Commun ; 668: 70-76, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244037

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. Recently, NLRP3 has been demonstrated to be closely related to RA. The objective of our research was to analyze the specific mechanism of NLRP3 in RA. The m6A levels of NLRP3 was detected with methylated RNA immunoprecipitation (MeRIP) kit. The mRNA and protein levels of related genes were tested with RT-qPCR and Western blot. The inflammatory factors levels were detected with ELISA kits. The cell proliferative ability was measured with CCK-8 and EdU staining assays. NLRP3 levels was prominently in synovial tissues and fibroblast-like synoviocytes (FLS) from RA patients. NLRP3 silencing suppressed FLS proliferation and inflammatory factor levels. Additionally, ALKBH5 was found to bind with NLRP3, and ALKBH5 silencing suppressed FLS proliferation and inflammatory factor levels while NLRP3 overexpressing neutralized the role of ALKBH5 in FLS. Furthermore, m6A modified induced by ALKBH5 suppressed NLRP3 mRNA level through YTHDC2 in RA, and NLRP3 is a hinge factor in RA progression.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células , Fibroblastos/metabolismo , Células Cultivadas , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Arthritis Rheumatol ; 75(8): 1381-1394, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36862399

RESUMO

OBJECTIVE: Disruption of B cell homeostasis and subsequent dominance of effector B cell subsets are critical for the development of systemic lupus erythematosus (SLE). Revealing the key intrinsic regulators involved in the homeostatic control of B cells has important therapeutic value for SLE. This study was undertaken to determine the regulatory role of the transcription factor Pbx1 in B cell homeostasis and lupus pathogenesis. METHODS: We constructed mice with B cell-specific deletion of Pbx1. T cell-dependent and T cell-independent humoral responses were induced by intraperitoneal injection of nitrophenyl-containing hapten (NP) conjugated to keyhole limpet hemocyanin or NP-Ficoll. The regulatory effects of Pbx1 on autoimmunity were observed in a Bm12-induced lupus murine model. We investigated mechanisms of Pbx1 using RNA sequencing, the cleavage under targets and tagmentation assay, and chromatin immunoprecipitation-quantitative polymerase chain reaction assay. We transduced B cells from SLE patients with plasmids that overexpressed PBX1 to explore the in vitro therapeutic efficacy of PBX1. RESULTS: Pbx1 was specifically down-regulated in autoimmune B cells and negatively correlated with disease activity. The deficiency of Pbx1 in B cells resulted in excessive humoral responses following immunization. In the Bm12-induced lupus model, mice with B cell-specific Pbx1 deficiency displayed enhancements in germinal center responses, plasma cell differentiation, and autoantibody production. Pbx1-deficient B cells had increased survival and proliferative advantages after activation. Pbx1 regulated genetic programs by directly targeting critical components of the proliferation and apoptosis pathways. In SLE patients, PBX1 expression was negatively correlated with effector B cell expansion; when PBX1 expression was enforced, the survival and proliferative capacity of SLE B cells were attenuated. CONCLUSION: Our study reveals the regulatory function and mechanism of Pbx1 in adjusting B cell homeostasis and highlights Pbx1 as a therapeutic target in SLE.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Linfócitos B , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo
11.
Immunol Invest ; 52(3): 319-331, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719801

RESUMO

BACKGROUND AND AIMS: Gout is a chronic self-limiting inflammatory arthritis. An increase in metallothionein-1 (MT-1) has been reported in rheumatoid arthritis and osteoarthritis, and it attenuates inflammation and the pathology of diseases. This study aims to detect MT-1 levels in patients with gout and to explore its correlation with disease activity, clinical indexes, and inflammatory cytokines. METHODS: The expression of MT-1 messenger RNAs (mRNAs) and protein levels in patients with gout were measured using real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Correlations between MT-1 and clinical indexes or inflammatory mediators were analyzed using Spearman's correlation test. RESULTS: Compared with healthy controls (HCs, n = 43), patients with active gout (n = 27) showed higher levels of MT-1 mRNA in peripheral blood mononuclear cells and protein in serum, particularly those with tophi. No significant difference in serum MT-1 levels was observed among patients with inactive gout, HCs, and patients with hyperuricemia without gout. Furthermore, no significant difference was observed between patients with gout with kidney damage and HCs. In addition, serum interleukin (IL)-1ß, IL-6, and IL-8 levels were significantly increased in patients with active gout, particularly in those with tophi. The serum MT-1 level was positively correlated with C-reactive protein, as well as with IL-1ß, IL-6, and IL-18. CONCLUSION: The higher levels of MT-1 were found in patients with gout, which were correlated with disease activity and gout related pro-inflammatory cytokines. Indicating MT-1 may serve as a new marker for predicting disease activity.Abbreviations: IL-1ß: Interleukin 1ß; MT-1: Metallothionein-1; CRP: C-Reactive Protein; ROS: Reactive Oxygen Species; IL-10: Interleukin 10; TGF-ß: Transforming Growth Factor Beta.


Assuntos
Gota , Interleucina-6 , Humanos , Interleucina-6/genética , Leucócitos Mononucleares/metabolismo , Proteína C-Reativa/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Gota/genética , Citocinas/metabolismo
12.
Arthritis Rheumatol ; 75(4): 574-585, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36245280

RESUMO

OBJECTIVE: IRF5 plays a crucial role in the development of lupus. Genome-wide association studies have identified several systemic lupus erythematosus (SLE) risk single-nucleotide polymorphisms (SNPs) enriched in the IRF5 locus. However, no comprehensive genome editing-based functional analysis exists to establish a direct link between these variants and altered IRF5 expression, particularly for enhancer variants. This study was undertaken to dissect the regulatory function and mechanisms of SLE IRF5 enhancer risk variants and to explore the utilization of clustered regularly interspaced short palindromic repeat interference (CRISPRi) to regulate the expression of disease risk gene to intervene in the disease. METHODS: Epigenomic profiles and expression quantitative trait locus analysis were applied to prioritize putative functional variants in the IRF5 locus. CRISPR-mediated deletion, activation, and interference were performed to investigate the genetic function of rs4728142. Allele-specific chromatin immunoprecipitation-quantitative polymerase chain reaction and allele-specific formaldehyde-assisted isolation of regulatory element-quantitative polymerase chain reaction were used to decipher the mechanism of alleles differentially regulating IRF5 expression. The CRISPRi approach was used to evaluate the intervention effect in monocytes from SLE patients. RESULTS: SLE risk SNP rs4728142 was located in an enhancer region, indicating a disease-related regulatory function, and risk allele rs4728142-A was closely associated with increased IRF5 expression. We demonstrated that an rs4728142-containing region could act as an enhancer to regulate the expression of IRF5. Moreover, rs4728142 affected the binding affinity of zinc finger and BTB domain-containing protein 3 (ZBTB3), a transcription factor involved in regulation. Furthermore, in monocytes from SLE patients, CRISPR-based interference with the regulation of this enhancer attenuated the production of disease-associated cytokines. CONCLUSION: These results demonstrate that the rs4728142-A allele increases the SLE risk by affecting ZBTB3 binding, chromatin status, and regulating IRF5 expression, establishing a biologic link between genetic variation and lupus pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Locos de Características Quantitativas , Genômica , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único
13.
Arthritis Rheumatol ; 75(7): 1203-1215, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36575806

RESUMO

OBJECTIVE: Emerging evidence indicates that a distinct CD11c+T-bet+ B cell subset, termed age/autoimmune-associated B cells (ABCs), is the major pathogenic autoantibody producer in lupus. Human lupus is associated with significant metabolic alterations, but how ABCs orchestrate their typical transcription factors and metabolic programs to meet specific functional requirements is unclear. We undertook this study to characterize the metabolism of ABCs and to identify the regulators of their metabolic pathways in an effort to develop new therapies for ABC-mediated autoimmunity. METHODS: We developed a T-bet-tdTomato reporter mouse strain to trace live T-bet+ B cells and adoptively transferred CD4+ T cells from bm12 mice to induce lupus. We next sorted CD11c+tdTomato+ B cells and conducted RNA sequencing and an extracellular flux assay. A metabolic restriction to constrain ABC formation was tested in human and mouse B cells. We used a bm12-induced lupus mouse model to conduct the metabolic intervention. RESULTS: ABCs exhibited a hypermetabolic state with enhanced glycolytic capacity. The increased glycolytic rate in ABCs was promoted by interferon-γ (IFNγ) signaling. T-bet, a downstream transcription factor of IFNγ, regulated the gene program of the glycolysis pathway in ABCs by repressing the expression of Bcl6. Functionally, glycolysis restriction could impair ABC formation. The engagement of glycolysis promoted survival and terminal differentiation of antibody-secreting cells. Administration of a glycolysis inhibitor ameliorated ABC accumulation and autoantibody production in the lupus-induced bm12 mouse model. CONCLUSION: T-bet can couple immune signals and metabolic programming to establish pathogenic ABC formation and functional capacities. Modulation of ABCs favored a metabolic program that could be a novel therapeutic approach for lupus.


Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Autoimunidade , Proteínas com Domínio T , Subpopulações de Linfócitos B/metabolismo , Autoanticorpos , Interferon gama/metabolismo , Metabolismo Energético , Fatores de Transcrição/metabolismo
14.
Risk Manag Healthc Policy ; 15: 2269-2281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479305

RESUMO

Background: The SARS-CoV-2 pandemic has imposed substantial health and economic burdens on the societies. COVID-19 vaccination is the most effective method of controlling the epidemic. This study assessed the attitude, willingness, and related factors of adult patients with rheumatic diseases (RDs) in China towards COVID-19 vaccination and identified their reasons for being vaccinated. Methods:  A cross-sectional survey was administered to patients with rheumatic diseases from July 18 to August 18, 2021, using an online questionnaire. Logistic regression analysis was performed to examine the data. Results: We analyzed data drawn from 464 participants who provided valid responses. A total of 324 (69.83%) RD patients were not willing to be vaccinated, of which 76.97% believed that COVID-19 vaccination might exacerbate the diseases symptoms. Logistic regression analysis showed that a combination of experiencing systemic damage, being in the acute attack stage of the disease, and fear of the adverse impact of vaccination on rheumatism, etc., were the predominant factors affecting the intentional vaccination rate in adult patients with rheumatic diseases (p < 0.05). Conclusion: The COVID-19 intentional vaccination rate was relatively low in adult Chinese patients with RD. Public health education and the dissemination of government scientific data for patients with RD should be enhanced to increase COVID-19 vaccination rates.

15.
Immun Inflamm Dis ; 10(12): e724, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36444616

RESUMO

BACKGROUND: As an autoimmune systemic disorder, rheumatoid arthritis (RA) features chronic inflammation as well as synovial infiltration of immune cells. This study was designed with the purpose of discussing the hidden mechanism of SPTBN1 and exploring favorable molecular-targeted therapies. METHODS: With the application of RT-qPCR and western blot, the expressions of SPTBN1 and PIK3R2 before or after transfection were estimated. Besides, Cell Counting Kit-8, Edu, wound healing, transwell, enzyme-linked immunosorbent assay, and TUNEL were adopted for the evaluation of the viability, proliferation, migration, invasion, inflammatory response, and apoptosis of fibroblast-like synoviocyte (FLS). In addition, the interaction of SPTBN1 and PIK3R2 was testified by applying immunoprecipitation (IP) and western blot was utilized for the assessment of migration-, apoptosis-, and PI3K/AKT signal-related proteins. RESULTS: It was discovered that SPTBN1 declined in RA synovial cells and its overexpression repressed the proliferation, migration, invasion, and inflammation of RA-FLSs but promoted apoptosis. IP confirmed that SPTBN1 could bind to PIK3R2 in FLSs. To further figure out the hidden mechanism of SPTBN1 in RA, a series of functional experiments were carried out and the results demonstrated that the reduced expressions of MMP2, MMP9, IL-8, IL-1ß, IL-6, and Bcl2 as well as increased levels of Bax and cleaved caspase3 in SPTBN1-overexpressed RA-FLSs were reversed by PIK3R2 depletion, revealing that SPTBN1 repressed the migration and inflammation and promoted the apoptosis of RA-FLSs via binding to PIK3R2. Results obtained from western blot also revealed that PIK3R2 interference ascended the contents of p-PI3K and p-AKT in SPTBN1-overexpressed RA-FLSs, implying that SPTBN1 repressed PI3K/AKT signal in RA via PIK3R2. DISCUSSION: SPTBN1 alleviated the proliferation, migration, invasion, and inflammation in RA via interacting with PIK3R2.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição , Inflamação , Proliferação de Células , Espectrina
16.
J Inflamm Res ; 15: 5935-5944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274830

RESUMO

Introduction: Ankylosing spondylitis (AS) is a common form of chronic inflammatory rheumatic disease. Metallothionein-1 (MT-1) has been known to play an immunosuppressive role in various noninfectious inflammatory diseases, especially osteoarthritis and rheumatoid arthritis, thus inhibiting inflammation and pathogenesis in various diseases. However, whether MT-1 is related to AS is unclear. Here, we examined the levels of MT-1 in patients with AS and its correlation with the disease activity, complication, clinical indexes, and inflammatory cytokines and attempted to explain the effect of MT-1 on inflammation in AS. Methods: The messenger RNA (mRNA) and protein expression of MT-1 in patients with AS were detected through real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The associations between serum MT-1 protein level and clinical indexes or proinflammatory cytokines in AS were analyzed using the Spearman correlation test. Results: The mRNAs and serum protein levels of MT-1 were significantly higher in patients with AS, especially in patients with active AS and patients with osteoporosis (OP) than in healthy controls (HCs), and no difference was observed between patients with inactive AS and HCs. Serum MT-1 levels positively correlated with disease activity, proinflammatory cytokines, and clinical indexes Ankylosing Spondylitis Disease Activity Score with C-Reactive Protein, C-reactive protein level, and erythrocyte sedimentation rate in patients with AS. Conclusion: MT-1 expression was upregulated in patients with active AS but not in those with inactive AS and positively correlated with clinical indexes, especially in OP, as well as with proinflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-1ß, and IL-6 in patients with AS.

17.
Front Immunol ; 13: 967658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091030

RESUMO

Objective: To investigate the efficacy and safety of clinical, magnetic resonance imaging (MRI) changes in active ankylosing spondylitis (AS) patients with etanercept and celecoxib alone/combined treatment. Methods: A randomized controlled trial was conducted in three medical centers in China. Adult AS patients with BASDAI ≥4 or ASDAS ≥2.1, CRP >6 mg/L, or ESR 28 mm/1st hour were randomly assigned (1:1:1 ratio) to celecoxib 200 mg bid or etanercept 50 mg qw or combined therapy for 52 weeks. The primary outcomes were SPARCC change of the sacroiliac joint (SIJ) and spine and the proportion of patients achieving ASAS20 response at 52 weeks. Results: Between September 2014 and January 2016, we randomly assigned 150 patients (mean age, 32.4 years; mean disease duration, 109 months), and 133 (88.6%) completed the study. SPARCC inflammation scores of the SIJ and spine decreased in the three groups, and significant differences were found between the combined group and the celecoxib group [between-group difference: -6.33, 95% CI (-10.56, -2.10) for SIJ; -9.53, 95% CI (-13.73, -5.33) for spine] and between the etanercept group and the celecoxib group [between-group difference: -5.02, 95% CI (-9.29, -0.76) for SIJ; -5.80, 95% CI (-10.04, -1.57) for spine]. The ASAS20 response rates were 44%, 58%, and 84% in the celecoxib, etanercept, and combined groups, respectively, and a significant difference was only found between the combined and the celecoxib groups. Conclusion: Etanercept with or without celecoxib decreases inflammation detected by MRI at 1 year compared to celecoxib alone in active AS patients. The combination of etanercept and celecoxib was superior to celecoxib alone for the primary clinical response. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT01934933.


Assuntos
Espondilite Anquilosante , Adulto , Celecoxib/uso terapêutico , Etanercepte/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Espondilite Anquilosante/diagnóstico por imagem , Espondilite Anquilosante/tratamento farmacológico
18.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35788118

RESUMO

Plasmacytoid dendritic cells (pDCs) are a professional type I IFN producer that play critical roles in the pathogenesis of autoimmune diseases. However, both genetic regulation of the function of pDCs and their relationships with autoimmunity are largely undetermined. Here, we investigated the causality of the neutrophil cytosolic factor 1 (NCF1) missense variant, which is one of the most significant associated risk variants for lupus, and found that the substitution of arginine (R) for histidine (H) at position 90 in the NCF1 protein (NCF1 p.R90H) led to excessive activation of pDCs. A mechanism study demonstrated that p.R90H reduced the affinity of NCF1 for phospholipids, thereby impairing endosomal localization of NCF1. As NCF1 is a subunit of the NADPH oxidase 2 (NOX2) complex, this impairment led to an acidified endosomal pH and facilitated downstream TLR signaling. Consistently, the homozygous knockin mice manifested aggravated lupus progression in a pDC-dependent lupus model. More important, pharmaceutical intervention revealed that hydroxychloroquine (HCQ) could antagonize the detrimental function of NCF1 p.R90H in the lupus model and systemic lupus erythematosus samples, supporting the idea that NCF1 p.R90H could be identified as a genetic biomarker for HCQ application. Therefore, our study provides insights into the genetic control of pDC function and a paradigm for applying genetic variants to improve targeted therapy for autoimmune diseases.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Animais , Células Dendríticas , Camundongos , NADPH Oxidases/metabolismo
19.
Hum Vaccin Immunother ; 18(5): 2090176, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878733

RESUMO

Patients with rheumatic diseases (RD) are considered to be a high-risk population for infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The effectiveness of inactivated COVID-19 vaccinations (ICVs) was described as more effective than 95%. Despite this, no data on the immunogenicity and safety of the ICV in Han race stable RD patients in China. In this study, we sought to assess the safety and immunogenicity of the ICVs in RD patients in South China. A total of 80 adult stable RD patients were recruited. Following 14-35 days of immunization, cheiluminescence immunoassays (CLIA) were utilized to detect antibodies titers. An investigation into the relative parameters on the immunogenicity response to vaccination was carried out using logistic regression analysis. Compared to the HC group, the positive response of IgG and Nab in RD patients were lower than those in healthy control (HC) (P = .040 and P < .0001, respectively) after two doses of ICV were inoculated. The use of methotrexate (P = .016) and prednisolone (P = .018), and the level of red blood cell distribution width-C (RDW-C) (P = .035) and C-reactive protein (P = .015) were independently associated with lower rises in the magnitude of COVID-19 vaccine antibodies. No vaccine-related serious adverse reactions were observed in either group. After receiving two doses of ICVs, the production of protective antibodies in stable RD patients treated with immunosuppressive agents may decrease. It was discovered that ICVs were safe and well tolerated by RD patients.


What is the context?There are currently no accessible data on the efficacy and safety of inactivated COVID-19 vaccinations in South China RD patients who are receiving immunosuppressive medications.What is new?Inactivated COVID-19 vaccinations were immunogenic in stable RD patients in our investigation. No significant adverse reactions to the vaccination were seen in either group. No disease flares were observed in our study.What is the impact?Inactivated COVID-19 vaccinations are immunogenic and safe in stable RD patients in China, according to the findings of this study. The use of methotrexate or prednisolone, the RDW-C level, and the CRP level may all have an effect on the development of protective antibodies following vaccination.


Assuntos
COVID-19 , Doenças Reumáticas , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , COVID-19/prevenção & controle , Estudos Prospectivos , Vacinação , Imunogenicidade da Vacina , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinas de Produtos Inativados/efeitos adversos
20.
Exp Ther Med ; 24(2): 495, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35837057

RESUMO

Autoimmune diseases (AIDs) are characterized by dysfunction and tissue destruction, and recent studies have shown that interleukin (IL)-37 expression is dysregulated in AIDs. Among cytokines of the IL-1 family, most are pro-inflammatory agents, and as an anti-inflammatory cytokine, IL-37 may have the potential to alleviate excessive inflammation and can be used as a ligand or transcription factor that is involved in regulating innate and adaptive immunity. IL-37 plays important roles in the development of AIDs. This review summarizes the biological characteristics and functions of IL-37 and discusses the potential of IL-37 as a therapeutic target for effective cytokine therapy and as a biomarker in AIDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...